Application of the Categorical and Regression Tree (CART) Model (trademark Salford Systems, San Diego, Ca) to Understand the Relationship between PM and Meteorological Variables in the San Joaquin Valley

Richard J Hackney and Jeff Austin, California Air Resources Board, Planning and Technical Support Division, Sacramento, California

CART - what is it?

- CART— statistical model that relates PM10 or PM2.5 concentrations and independent meteorological variables such as RH, temperature (min, max, mean), stability, visibility, and precipitation.
- The output is trees that show terminal nodes relating how much the meteorological variables contribute to PM concentrations (the nodes) as well as the relevancy of each meteorological variable.

Figure 1 -- Example CART Tree – Splitting the Met Variables

CART STUDY DOMAIN

CART Model Input Requirements

- · Data, air quality and met consisted of:
 - Every 6th day sampling of PM10 and PM2.5
 - For four sites Bakersfield, Fresno, Stockton, and Corcoran
 - 1988 to 2000 for PM10
- 1999 to 2000 for PM2.5
- Meteorology consisted of surface and Oakland aloft at the 4 stations above – most all surface type parameters, 850 mb temp, 500 mb height and stability (850Temp-closest minimum surface temp)

MODEL OPTIONS

- Regression tree, least squares optio
- Rest of options model default options
- Run from 1988 to 2000 for PM10 and 1999 to 2000 for PM2.5, for all seasons, fall (September to November), and winter (December to February)
- Ran for four separate regions of the SJV north
 (Stockton), central (Fresno), south (Bakersfield) and
 agricultural (Corcoran)
- Computer run times of a few minutes or less allowing many corrective runs to be performed daily

CART ANALYSIS USED FOR SAN JOAQUIN VALLEY PM10 SIP-ALL SEASONS

- Figure 2 -- tree for Fresno PM2.5
- The highest PM mean is in Node 2 --85 ug/m**3
- Predicted by low minimum temps and moderate stability
- The 85 ug/m**3 is three time higher than other nodes but with only 62 occurrences compared to 635 total PM2.5 records analyzed

Figure 2 - Tree for Fresno PM2.5

Summary of All Seasons, Fall, and Winter Analyses

- Table 1 shows the analyses for all seasons, in all of the four regions
 - Stability is the most important met variable followed by min temp, and visibility
 - Tables 2 and 3 show Winter and Fall analyses
 -In winter, there is a dependence on both stability and
 mintemp with one node having visibility as a primary
 splitter
 - There appears to be no dependency on wind speeds in Corcoran case for Fall

Table 1 -- All Seasons Analysis

Sto	PM Pollutant Type	Primary Spitting Variable	Secondary Splitting Variables	Highest New PM Concentration (agin=2)	Lowest Mean PM Concentration (ugin "2)	Variable Importance
Saken54d	PM 10	Stability	No Others	90	41	Stab-100
Sakenfield	PM 25	Visbity	Stability	н	54	Via - 100, Stab - 20, mintemp - 50
Freeza	PM 10	Stability	Mintemp, Wird speed, and RH	65	54	Stati-100, wind speed - 92, mintersp - 96, and RH - <25
Freeza	PM 25	Mintemp	Stabilly, Visibility	84	22	Mintemp =100, stab = 74, vis = 39
Social	PM 10	Stability	No Others	60	-da	Stat - 100, vis - 11
Stoken	PM35	Minnersp	Validity	45	<25	Mintemp +100, vis - 44
Cocoan	PM 10	Stubilly	Maximp	96	21	Stab = 100, in a det p = 53
Cocoan	Coase (PA10-PA25)	Maxtenp	Stubilly	84	10	Stati-100, Meantemp -91, Maxemp -79

Table 2 -- Winter Analysis

Site	PM Pollutant Type	Primary Splitting Variable	Secondar y Splitting Variables	Highest Mean PM Concentrati on (ug/m**3)	Lowest Mean PM Concentrati on (ug/m**3)	Variable Importanc e
Bakersfield	PM 10	Stability	Mintemp, RH	112	22	Stab –100, mintemp 56, RH – 29
Bakersfield	PM25	Visibility	Mintemp	86	8	Vis – 100, Stab –97, mintemp –
Fresno	PM 10	Mintemp	Stability	236	34	Mintemp -100,
Fresno	PM25	Stability	Mintemp, Visibility	127	16	Stability -100, mintemp - 89 vis - 39
Stockton	PM 10	Mintemp	No Others	75	41	Mintemp – 100
Stockton	PM25	Mintemp	No Others	52'	21'	Mintemp

Table 3 -- Fall Analysis

Site	PW Pulls tant Type	Primary Spitting Variable	Secondary Spiriting Variables	Highest Mean PM Concentration (ug/m**2)	La west Mean PW Concentration (ug/m*2)	Variable Importance
State rate d	Pano	Social	NoOtes	93	41	Sao 100
States sfeld	PIES	Visibility	Smooth	71	14	Vis = 100, Siso = 20, minemp = 50 (did not play a role)
Freezo	Pamo	Stability	Mintemp, Windspeed, and Re	es	16	State - 100, wind speed - 62, mintersp - 66, and RH - < 26
Freezo	PNOS	Mramp	Statility, Visbrilly	84	20	Mintemp =100, stats = 74, vis = 28
Struction	Pano	Society	NoOthers	43	<00	990 - 100, WL - 11
Struction	PNDS	Mnamp	Victory	45	-25	Minamp =100, Vis = 44
Consoran	Pano	Society	Maxtemp	96	21	990 - 100, maxtemp - 53
Congraes	Coane (PM10-PM25)	Maximp	Sability	84	10	Sists - 100, Meanteing - 81, Mauserip - 79

CONCLUSIONS

- · All Season Analysis
 - PM2.5 more complex trees with mintemp and visibility being the prime splitters
 - PM10 -- Stability is the primary variable for all four sites
 - Stability greater than 8 (850mb Temp-sfc min temp) defines in most cases very high mean PM10
- concentrations, considering other variables

 Low visibility, low mintemps, and high stability seem to predict high mean PM2.5 concentrations

CONCLUSIONS (Part II)

- Winter Runs (December, January, and February)
- Winter season splitting variables for PM10 are not so stability dependent – other variables include mintemp at two sites. Secondary splitters include mintemp, stability, and relative humidity
- PM2.5 primary splitters were visibility, stability, and mintemp. Secondary splitters include mintemp and visibility
- The highest PM10 occurred when stability > 12 (very high) and RH < 82 or in another node when moderate stability and low overnight temps. High PM10 levels were coincident with high PM2.5 levels

CONCLUSIONS (Part III)

- Fall Runs (September, October, November)
- Difficult to tell when fall ends and winter begins so November end time is arbitrary
- Stability was primary PM10 splitter for all 3 locations.
 Other secondary splitters were visibility and RH
- For PM2.5, primary splitter was visibility at all 3 sites.
 Other secondary variables included meantemp (compared to mintemp for winter), stability, and RH

KEY HIGHLIGHTS OF CART

- CART was used successfully to categorize what met variables produced the highest and lowest PM levels in the San Joaquin Valley and supported the SJV PM10 SIP
- CART simulated three regions of the valley quite well
- CART worked well with regional scale meteorology (over all or part of the Valley) but did not simulate localized high wind speeds over the Corcoran area